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The flipped classroom model enhances student engagement by encouraging active par-
ticipation and collaboration, wherein students co-create knowledge by collaborating to

address complex educational tasks, fostering deeper interaction between students and

teachers. Swarming, a nature-inspired approach, uses collective intelligence to solve com-
plex problems effectively, similar to how students work together in the flipped classroom.

The knapsack problem involves selecting a subset of items with maximum desirability
while meeting specific constraints. In education, this can represent choosing the most

relevant resources from a large corpus for a given research question while managing con-

straints like time or complexity. This work proposes a framework that maps the task
of selecting educational resources to the knapsack problem, solving it through the Ant

Colony Optimization (ACO) algorithm to leverage collaborative learning. Experimen-

tation shows that the proposed solution is more suitable for this context, while ACO’s
sensitivity analysis demonstrates its effectiveness for the framework’s needs.

Keywords: Educational framework, Co-creation, Swarming, Ant colony optimisation,

Knapsack problem.

1. Introduction

Nowadays, emerging technologies such as Artificial Intelligence (AI) and the Internet

of Things (IoT) are fundamentally transforming education 1. These advancements

are reshaping how learning is delivered and supported, promoting a self-organising

vision of education where technology plays an increasingly pivotal role 2.

The flipped classroom educational model has recently gained significant traction

with its emphasis on active student engagement over passive information recep-

tion, fostering greater autonomy, collaboration, and teamwork among students 3.

In flipped classrooms, students often work in small groups to tackle complex chal-

lenges, bringing diverse skills and knowledge to collaboratively create solutions.

Education on natural disasters and emergency situations is crucial as it con-

tributes to community preparedness and resilience, reducing the loss of human

lives and material damage. Additionally, informing and educating citizens promotes

timely and effective responses to crises, enhancing their ability to protect themselves

and those around them.
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Despite the variety of educational tasks students encounter, many share common

elements, such as identifying relevant resources, updating cognitive models through

study, and producing outputs reflecting their understanding. This work models these

generic tasks as an optimization problem, specifically the Knapsack problem 4. This

problem involves selecting the most valuable subset of items from a larger set while

adhering to specific constraints, such as time and complexity.

Swarming, inspired by the collective behavior of social insects like ants and bees,

offer effective solutions for complex problems through decentralised, self-organised

collaboration 5. Ant Colony Optimisation (ACO) is one such approach 6, leveraging

the natural behavior of ants to identify optimal solutions efficiently 7.

In this paper, we propose a framework that integrates educational tasks with

ACO to harness the co-creational benefits of the flipped classroom paradigm. By

mapping educational challenges to the Knapsack problem and solving them using

ACO, we aim to enhance the collaborative and creative aspects of learning.

Related research on the combination of the aimed to aspects of the proposed

framework is scarce, but the individual aspects have indeed received significant at-

tention. Co-creativity and its multi-domain provenance and effect has been explored

academically since the early 1950s’ 8,9, while in the context of education since 2008
10,11. The flipped classroom paradigm has been ground-breaking in educational do-

mains, which is nowadays considered as a clear form of co-creation 12,13,14. Given the

mapping of the co-creative educational task to the Knapsack problem, the Swarm-

ing & Ant Colony Optimisation methods lend themselves as promising approaches

to develop effective solutions 15,7,16,6.

1.1. Motivation & Contribution

Despite the obvious complementarity of the three pillars leading to the key theme

of the work, educational task modeling to combinatorial optimisation solved by

swarming methods, to the best of our knowledge, existing bibliography has not

shone light on this amalgamation. Moreover, the prevailing of the new paradigm for

educational methods, as addressed through the flipped classroom model, has been

a significant and necessary development that despite its popularity still requires

further exploration as to its implementation and efficiency. In addition, one of the

main tenets of the flipped classroom model, the collaboration aspect, is addressing

a, now more than ever, important aspect of the human condition, the ability to

creation and co-creation. Latest developments in the domain of generative artificial

intelligence have pushed the envelope of neural networks from pattern matching,

to style learning to art-generating AI raising a litany of questions on the matter

of creativity. Nevertheless, co-creativity is valuable tool for promoting creative and

effective solutions to complex problems wherein the “collective intelligence” of co-

creators is the required driving force.

Still, modeling of educational scenarios and the subsequent application of effi-

cient and effective methodologies to address said needs is far from trivial. In order
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to address these requirements, this work proposes a framework that models the

generic educational task of identifying a subset of literary works, best meets the

task’s requirements, from a large corpus, for some constraint, and maps it to the

Knapsack problem that is then solved using the ACO swarming algorithm in order

to take advantage of the co-creational advantages of the flipped classroom paradigm.

Accordingly, the key contributions of this work can be summarised as follows:

• modelling of a generic part of numerous educational activities into a combinatorial

optimisation,

• framework proposal that amalgamates the aforementioned modeled educational

activity with a collaborative solution based on swarming methodologies wherein

the mapping of characteristics of the 3 pillars of the framework are defined

The rest of the paper is organised as follows: Section 2 explores related work on the

intersection of key pillars of education, co-creativity, the amalgamation of education

& co-creativity, swarming & the Ant Colony Optimisation and the Knapsack prob-

lem with same of its various solutions. Section 3 presents the proposed framework

for the combination of a generic education task modeled as the Knapsack problem

that is subsequently addressed with the ACO algorithm. Section 4 discusses the

setup used for the experimentation, the results of the experiments and the eval-

uation of the results obtained. Section 5 describes the limitations associated with

the proposed model. While the framework demonstrates significant potential in en-

hancing educational outcomes through swarming methodologies, several challenges

must be addressed. Finally, the paper is concluded in Section 6.

2. Background and related work

Several methodologies have been researched to support and enhance the learning

process through swarming techniques, including collaborative learning, personalised

learning, and gamification among others.

Collaborative learning refers to the process of working with groups of learners

to achieve a common goal, as opposed to learning alone 17. Vygotsky’s social con-

structivism theory underpins this concept, positing that learning is inherently a

social process enhanced by interaction and knowledge exchange among learners 18.

Research 19 has identified the benefits of collaborative learning, such as heightened

motivation and engagement, improved communication and interpersonal skills, and

enhanced critical thinking and problem-solving abilities. Depending on the kind of

communication desired, it can be done by using a variety of methods, including

online platforms, face-to-face meetings, or even a combination of both. It has been

found that collaborative learning has a number of benefits, including improved moti-

vation and engagement among learners, improved communication and interpersonal

skills, and increased ability to think critically and solve problems 20.

The concept of personalised learning in education refers to an instructional ap-

proach aiming to adapt the learning experiences to reflect unique needs, interests,
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and abilities of individual learners, and to ensure these aspects are met. This ap-

proach often involves providing a range of tools and strategies, thereby granting stu-

dents greater autonomy and control over their learning journey 21. Recent studies

suggest that personalised learning can significantly improve educational outcomes

by aligning instructional methods with individual learning preferences and pacing.

However, more empirical evidence is required on the long-term impacts of person-

alised learning on student achievement and how best to implement these strategies

across diverse educational settings 22. Additionally, research should focus on the

technological and pedagogical challenges in scaling personalised learning effectively.

Gamification applies game design principles and mechanics to educational ac-

tivities to engage and motivate students. By incorporating elements such as points,

badges, leaderboards etc. into curricula, gamification aims to make learning more

enjoyable and stimulating. Research 23 shows that gamification can significantly

increase student engagement and motivation. Nonetheless, there are critical gaps

in understanding the balance between gaming elements and educational content

to avoid potential distractions from learning objectives 24. Future research should

investigate the types and combinations of game mechanics that are most effective

for different age groups and subjects. Additionally, there is a need to explore the

long-term effects of gamification on learning retention and academic performance.

2.1. Education

In the field of AI, swarm intelligence has become a critical development direction as

an emerging research area that has the potential to revolutionise the way education

and learning are being delivered 25. Wong & Looi 21 introduce the concept of swarm

intelligence, for developing adaptive learning systems that can adjust the difficulty

of learning materials in accordance with the performance of students. This leads

to a more personalised and engaging learning environment. The authors, however,

acknowledge that the design of the swarm needs to be carefully considered to ensure

that it is effective at achieving the learning goals.

In another study, Kurilovas et al. 26 propose an improved swarm-based ap-

proach to recommend appropriate learning scenarios based on learners’ preferences.

Learners are divided into different groups based on their preferences and a swarm

optimisation algorithm then finds the most appropriate learning scenarios. Based

on learners’ preferences, their proposed approach provides a promising solution for

meeting the task of recommending suitable learning scenarios to learners. It is im-

portant to note, however, that more research is required to determine whether their

proposal is effective and if it is scalable for large data-sets 27.

Menai et al. 28 argue that traditional methods of curriculum sequencing have

limitations that can be overcome by using swarm intelligence algorithms. They

propose a new curriculum sequencing algorithm (SwarmRW) that uses swarm intel-

ligence to solve the problem of the curriculum sequencing, based on the Ant Colony

Optimisation and highlight the potential for this method.
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Swarm intelligence algorithms are increasingly used in education research and

practice, especially in personalised learning and adaptive assessment. While their

use in education is still in its early stages, these approaches have shown promising

results in improving students’ learning outcomes and providing personalised and

adaptive learning experiences.

2.2. Co-creativity

Co-creativity is a concept that has been explored by several researchers in differ-

ent fields, from education to design, and from arts to technology. At its core, co-

creativity refers to collaborative and participatory practices that involve individuals

working together to create something new and innovative 8,9.

One of the earliest accounts of exploring co-creativity in the context of edu-

cation was written by Anna Craft in 2008 10. Craft addressed the implications of

studying collaborative creativity for education and identified the importance of fos-

tering a supportive environment for creativity to thrive. An example of the use of

co-creativity in education can be found in the work of Alexander Schmoelz, who

explored the potential of co-creativity in playful classroom activities 11. Schmoelz ar-

gued that co-creativity can promote engagement, motivation, and creativity among

students, and suggested practical strategies for implementing co-creative activities

in the classroom. Another example of the use of co-creativity in education is in the

work of Astutik 29,30, who investigated the effectiveness of Collaborative Creativity

Learning (CCL) models in developing scientific creativity skills among secondary

school students. Astutik’s research found that CCL models, which involve collab-

orative and participatory learning activities, can promote creativity and scientific

thinking among students. In the field of design, the work of Vyas et al. 31 explored

the collaborative practices that support creativity in design. Therein, the authors

argued that co-creativity can promote diverse perspectives, idea generation, and

innovation in design, and provided examples of successful co-creative design prac-

tices. The potential of co-creativity in the arts is also explored by Zeilig et al. 32.

Therein, the authors investigated the use of co-creative arts’ interventions for peo-

ple with dementia, and posited that co-creativity can provide a meaningful and

enriching experience for individuals with dementia, promoting social inclusion and

well-being. In 33, Sanabria’s work on enhancing 21st century skills with augmented

reality (AR) emphasised the importance of co-creativity in technology-mediated

learning environments. Their research lead to the conclusion that a gradual immer-

sion method can foster collaborative creativity in AR-based learning activities. The

work by Satama et al. 34 explored the embodied subtleties of collaborative creativity

in dance, providing insights into how organisations can learn from dance to promote

co-creativity in their work environments.

These examples highlight the versatility and potential of co-creativity as a con-

cept that can be applied across various fields and contexts. Whether in education,

design, technology, or the arts, co-creativity can promote, and is ultimately based
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on, collaboration, participation, and innovation, making it a valuable tool for pro-

moting creative and effective solutions to complex problems.

2.3. Inverted Classroom: A Form of Co-creation

The flipped classroom model is considered a form of co-creation 12, as it involves

a collaborative approach to learning between teachers and students. Students are

given instructional material to review outside of class, freeing up class time for more

live, interactive, and collaborative activities. This approach allows students to take

more ownership of their learning and actively participate in the learning process.

According to a literature review by Roehl et al. 35, the flipped classroom model

can promote student engagement and active participation and can lead to increased

collaboration between teachers and students. Gomez-Lanier argues that flipped

classroom promotes a greater understanding of course material as well as improves

verbal, analytical skills and nurtures their creativity and adaptability to working

with others. Carvalho and Goodyear 36 argue that the flipped classroom model can

facilitate co-creation of knowledge by enabling students to take an active role in the

learning process and by promoting collaboration among teachers and students, as

well as between students themselves.

During interactive and collaborative activities in the flipped classroom, students

can work together to co-create knowledge by sharing their ideas, insights, and per-

spectives 37. Teachers can act as facilitators, guiding and supporting students as

they work together to make sense of complex concepts and ideas. This collaborative

approach to learning can lead to improved learning outcomes for students, as shown

in a meta-analysis by Hew and Lo 13 which found that the flipped classroom model

can improve student learning outcomes and that this improvement may be due in

part to increased student engagement and active participation.

In addition to fostering collaboration between students, the flipped classroom

model can also encourage co-creation between teachers and students 38. Teachers

can create instructional materials that are more tailored to the needs and interests

of their students, while students can provide feedback and contribute their own

ideas and insights to the learning process 14.

The flipped classroom model can promote a more collaborative and interac-

tive approach to learning, where teachers and students work together to co-create

knowledge and enhance the learning experience for everyone involved.

2.4. Swarming & Ant Colony Optimisation

To develop effective solutions for complex problems, it is important to also examine

nature-based solutions, such as the principles of “swarm intelligence”. The concept

of swarm intelligence can be traced back to the biological study of how insects inter-

act with each other in a self-organised manner 15. According to Du and Swamy 7,

social insects (e.g. ants), use swarming to coordinate their activities and accom-

plish tasks such as foraging for food and building nests, that are otherwise deemed
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too complex for each unitary insect to accomplish. Combining swarm intelligence

with algorithmic optimisation techniques has proven to be one of the most effective

approaches to solving complex logistics, engineering, and finance problems 6.

ACO is a discrete optimisation approach that is based upon the ability of ants

to collaborate in order to identify the shortest paths to targets 6. The basic concept

behind ACO is the use of artificial ants. These ants traverse paths on a graph whose

nodes represent the components of the solution to a challenge. As ants traverse

between nodes, they construct solutions to the problem at hand.

As part of the ACO approach, simulated pheromones are used to attract ants

onto better trails / edges through graphs. Pheromones are chemicals ants release on

their trails to attract other ants. As ants work together, they explore randomly and

monitor chemicals left behind by other ants. This method of collaboration is known

as stigmergy 16. It is an effective way for ants to find a solution to complex problems

by leveraging collective intelligence. Accordingly, ACO is a powerful tool in the field

of artificial intelligence and is thus used to tackle a wide range of problems, from

routing to scheduling and optimisation 6.

2.5. Research Gap

While there is significant research 15,7,16,6 on individual components of our pro-

posed framework, the integration of these into a cohesive educational model remains

underexplored. Existing literature extensively covers collaborative learning, person-

alised learning, and gamification as separate methodologies to enhance education.

However, the combination of these approaches with swarming techniques 5, such

as Ant Colony Optimization (ACO) 6, and the mapping of educational tasks to

optimisation problems like the Knapsack problem 4, has not been thoroughly inves-

tigated. Current studies highlight the benefits of collaborative learning in fostering

social interaction and knowledge exchange, but they do not explore optimising these

interactions through advanced algorithms. Similarly, while personalised learning ef-

fectively tailors experiences to individual needs, its integration with co-creational

processes and swarming intelligence remains unexplored. Therefore, our work aims

to fill this gap by proposing a framework that combines these methodologies.

2.6. Knapsack Problem

The “Knapsack Problem” is the challenge of filling a fixed-sized sack with the most

valuable items, and as per Smith-Miles et al. 4, is:

We are given a set of n items, each item i having an integer profit zi and an

integer weight wi. The problem is to choose a subset of the items such that

their overall profit is maximised, while the overall weight does not exceed a

given capacity C.

This can be expressed, as per 4, using the equation max
∑n

i=1 zixi with con-

straints
∑n

i=1 wixi ≤ C where C is the total knapsack load capacity; zi is the profit
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on an object i; wi is the weight of an object i; C,zi, and wi are all integers and

positive numbers; and xi = 0 when an object i has not been loaded into a knapsack

or xi = 1 when an object i has been loaded into a knapsack.

In this paper, we are focusing on the most commonly used case, the “0-1 knap-

sack problem”, which restricts the number of copies of each item to zero or one. This

variation is better suited for our scenario whereby students pick academic papers

only once in order to complete a specific task.

There are several variations of solutions for the knapsack problem 39, ranging

from examining all combinations of items, to dynamic programming algorithms to

swarming algorithm solutions, as described in the sequel.

To illustrate the 0-1 knapsack problem in our educational context consider a

student with a time budget of 7 hours (C = 7) selecting papers to read from the

following collection Table (1):

Paper Reading Time (hrs) Educational Value

A 3 8

B 2 6

C 4 9

D 1 3

E 5 10

Table 1. The Knapsack Problem in a educational model.

If educational value represents our profit zi and reading time represents our

weight wi, the optimal solution would be to select papers A, B, and D (total time:

6 hours, total relevance: 17), rather than just selecting paper E (time: 5 hours,

relevance: 10). We can see from this that an optimization strategy is required, not

just a selection based on high educational values.

It’s important to note that the 0-1 knapsack problem is NP-hard, meaning that

as the number of items increases, the computational complexity grows exponentially.

In practical educational settings with numerous resources to choose from, this makes

exhaustive search methods impractical, necessitating heuristic approaches like ACO

that can find near-optimal solutions efficiently, even if they don’t guarantee the

absolute optimal solution. A more detailed discussion follows in section 2.6.3.

This simple example demonstrates how the knapsack problem directly maps to

educational resource selection challenges, where students must maximize learning

value while respecting time constraints.

2.6.1. The Brute-force Solution

In order to address the requirements of the 0-1 knapsack problem one might resort

to a methodology that evaluates all alternative potential solutions and then keep

(one of) the best. This approach requires the non-repeating combination of sampling
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r of n discrete elements as per the equation C(n, r) = n!
r!∗(n−r)! .

Moreover, given the requirements of the Knapsack problem to allow one or

more elements to be selected, the combinations of all scenarios ∀r ∈ [1, n] must

be considered leading to the evaluation of the number of combinations using the

equation ∥combinations∥ =
∑n

r=1 C(n, r).

As this method does not utilise any optimisation, the number of combinations it

has to examine, even for relatively low numbers of N elements is significantly high.

Fig. 1. Number of combinations for one or 30 examining entities (agents) where distinct elements
and the number of samples are equal and vary in the range of 1 to 40.

Figure 1 presents the number of combinations for one or multiple agents when the

number of distinct elements and the number of samples are equal for values ranging

from 1 to 40, leading to maximum numbers of combinations reaching values near

1012. Herein, the term agent refers to the elements to be included in the knapsack,

in a form of parallelisation of the task, where the volume of combinations to be

examined are with high approximation equally split between them.

This very high number of combinations is mainly the result of the numerous

alternatives of the number r of elements to be sampled from the discrete elements

while the most significant contributors are the ranges of r in the center of its dis-

tribution, as shown in Figure 2, and mostly around 30%-70%.

As far as the form of parallelisation in the examination processes with multiple

agents, the number of concurrent examining agents does indeed significantly affect

the number of combinations per agent but given the relatively high number of

combinations to be examined altogether, the combinations per agent still remain

quite large, as shown in Figure 3 where the number of distinct elements and the

number of samples are both equal to 40. Accordingly, the brute-force solution to

the Knapsack problem, despite the fact that it always reaches the best solution(s),

becomes prohibitively expensive for relatively small quantities of discrete elements

in terms of the sheer number of combinations that must be evaluated.
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Fig. 2. The percentage of contribution attributed to varying sampled elements of all the discrete

elements (% of samples from elements).

Fig. 3. Number of combinations with 40 distinct elements and 40 samples, evaluated for a varying
number of concurrent agents within the range of 1 to 30.

2.6.2. Dynamic Programming Solution

Another way to solve the 0-1 Knapsack problem, is to use the Dynamic Program-

ming (DNP) algorithm which works on the principle of using a table to store the

answers to solved subproblems. Whenever a subproblem is surfaced again, the an-

swer can be looked up in the table rather than being computed again. As a result,

dynamic programming-designed algorithms are incredibly efficient.

Unfortunately, herein, it cannot be applied to our educational model, i.e. map it

to students co-creating solutions by accessing informative resources / papers. Never-

theless, it is used herein as a point of reference to obtain exact solutions comparing

the results to other algorithms for the solutions for the Knapsack problem, such as

the ACOK algorithm, discussed in the sequel (Section 2.6.3).
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2.6.3. ACOK Algorithm Solution

The knapsack problem’s NP-hard nature offers valuable teaching opportunities.

First, students experience firsthand how problem complexity grows exponentially,

providing intuitive understanding of computational complexity theory. This expe-

riential learning helps solidify abstract theoretical concepts through practical en-

gagement.

The significant gap between exact methods like dynamic programming and ap-

proximation methods such as ACO at different problem scales demonstrates the

tradeoffs between solution quality and computational efficiency. Students gain ap-

preciation for why approximation algorithms are often necessary in practice, even

when they don’t guarantee optimal solutions.

Perhaps most importantly for our framework, NP-hard problems highlight the

value of collective intelligence approaches, as they create scenarios where distributed

problem-solving can effectively explore large solution spaces. When individual com-

prehensive exploration becomes impractical, swarm-based approaches demonstrate

their particular strengths.

In this work, to solve the 0-1 Knapsack problem, we will employ the ACO

algorithm and compare it against the brute-force method, as described in Section

2.6.1. Due to the long duration of the brute-force algorithm and the fact that the

ACO algorithm does not always guarantee a 100% optimal 40 solution, we use the

aforementioned dynamic programming algorithm, as described in Section 2.6.2, to

obtain the exact solution so we have a fixed target for comparison.

As described in section 2.6.2 a DNP approach to solve the 0-1 Knapsack problem

cannot be applied to our educational model meaning that a different approach is

needed. On the other hand, ACO as described in section 2.4 employs a probabilistic

technique to explore the solution space efficiently. This stochastic process helps in

escaping local optima, which is a common issue in combinatorial problems such as

the 0-1 Knapsack problem 41,42.

Furthermore, in ACO, pheromone trails represent the learned quality of solu-

tions 6. When applied to the 0-1 Knapsack problem, these trails can effectively

highlight promising item selections, helping to explore effective solutions more effi-

ciently.

By combining, the use of the 0-1 Knapsack problem within the ACO framework

not only enhances the efficiency and effectiveness of solving the knapsack problem

but also enriches the ACO algorithm with practical problem-solving capabilities.

Taking advantage of this hybrid approach for our framework, we utilise a ported

version of the standard ACO algorithm tailored for the 0-1 knapsack problem 2.6

(ACOK). The main procedure is described in Algorithm 1.

An artificial ant’s probabilistic solution building process is biased by phero-

mones and heuristic variables (α, β) in ACO. The ants’ movements are determined

by stochastic local decision policies based on two composite parameters, namely,

the pheromones and the attractiveness of the path leading to an, also, attractive
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Algorithm 1 ACOK - ACO tailored for the 0-1 knapsack problem

antCount← number of ants

cycles← number of cycles

initialise a global solution

for i = 1 to cycles do

create antCount ants

for all ant in ants do

ant creates a local solution

if local solution’s profit > global’s profit then

make the local solution global

end if

end for

evaporate

update pheromones

end for

edge 43. Each ant incrementally constructs a solution to the problem by moving

iteratively in various directions. In the process of completing a solution, the ant

changes the pheromone value on the visited items, aiming at providing pheromone

information to guide future ants.

In more detail, each ant moves from one state i to another state j according to

a transition probability rule pj
43, as shown in Eq. (1).

p =


τα
j µβ

j∑
j∈Ni

τα
j µβ

j

, for j ∈ Ni

0 , for j ̸∈ Ni

(1)

The α parameter is responsible for controlling the impact of the pheromone

trail τj , i.e. the collective memory of the colony. Increasing the value of α, ants

are more likely to follow pheromone trails that other ants have previously followed.

Parameter β controls the impact of the heuristic information (attractiveness µj),

which is local information available to the ants regarding the problem. Increasing

β, ants are more likely to choose paths that appear to be more promising based on

the characteristics of the problem. The neighbourhood Ni of state i is composed of

items that can be used for the construction of a partial solution. The attractiveness

µj refers to the problem-specific heuristic information that is used by the ants to

evaluate the desirability of an item from the neighbourhood Ni being added to the

Ni solution under construction. zj is the profit and wj is the weight of the selected

item j. Accordingly, the attractiveness 43 can be expressed as per the equation

µ = zi
w2

j
.

When a solution has been found, each ant deposits an amount ∆τ of pheromone

τ on all the items included in the solution following the pattern using the equation

tau = τ +∆τ .
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The amount ∆τ of pheromone deposited on each item is proportional to the

quality of the solution that the ant has found 43. This is shown in the equation

∆τ = f(Q) = 1

1+
zbest−z

zbest

.

Finally, a mechanism of evaporation, as far as pheromones are concerned, is in-

corporated into the process of ACO and respective implementation of algorithms

to avoid fast convergence to a sub-optimal solution 43. The strength of evapora-

tion is controlled by the parameter ϱ which represents the evaporation rate. The

evaporation is calculated using the equation τ = ϱτ, ϱ ∈ (0, 1).

3. Proposed method

This paper introduces and examines a framework (Algorithm 2) for educational sce-

narios where a teacher/enabler maps the educational task at hand to a distributed

and decentralised process during which students cooperate to solve a challenge or,

more generally, perform an educational task. As a result, students themselves co-

create the solution, meaning that the solution they develop is a result of their

collective output.

Algorithm 2 Educational Swarming Framework

teacher sets the educational task to a flipped classroom

teacher sets a time limit

studentCount← number of students in the flipped classroom

cycles← number of cycles

initialise a global solution

for i = 1 to cycles do

for all student in students do

student selects a subset of items based on time availability,

reading capacity, and content complexity

student evaluates each source by relevance, reference/cite count

student creates a local solution

if local solution’s score > global’s score then

make the local solution global

end if

end for

students’s memory retention decreases (evaporation)

students form collective memory (pheromones update)

end for

In swarm learning, the teacher/enabler plays a different role compared to tra-

ditional teaching approaches 44. The teacher is not necessarily an instructor, but

rather more of a facilitator with primary responsibility to support and guide stu-

dents as they work collaboratively in order to learn. The teacher/enabler should first
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identify the educational task / goal they want to achieve through their teaching.

This could involve defining the learning objectives, outcomes, and/or competencies

they want their students to develop. In examining the integral part of education, i.e.

the students, and more specifically a class of students seeking out new knowledge,

we observe that it is directly related to the ant colony paradigm and that makes

ACO an ideal candidate for a swarming approach for the aforementioned task.

One of the key initial activities of students is identifying information relating

to the educational task. To achieve this, students are expected to examine sources

to gather as much information about the subject in question. Each source is eval-

uated by both students and peers of its authors. The relative quality of a source

depends on how well it meets the student’s informational needs. Additionally, stu-

dents’ evaluation of a source requires a thorough examination of the source’s content,

including its bibliography thus affecting the whole examination process by adding

more resources. Moreover, by citing a source within their own work, the peers of

the source’s authors in addition to providing references where due, they indirectly

provide a measurement of evaluation, much like in the manner PageRank does when

evaluating web pages 45.

The process of selecting papers that contribute most to the task at hand rep-

resents a well-defined problem domain as already discussed in Section 2.6, the

Knapsack problem that dates back to the early works of the mathematician To-

bias Dantzig 46. To address the mapped educational challenge with the Knapsack

problem using the aforementioned swarming solutions, the ACO approach, which is

a generic approach rather than a specific algorithm, it needs to be tailored to the

particular problem under consideration i.e. education. To achieve this goal, we use

the Knapsack problem as an intermediary.

As described in Section 2.6, the knapsack problem attempts to select the subset

of items with maximum desirability while satisfying a constraint on the total weight

of the items 47. Within the context of learning, the knapsack problem can be applied

to the selection of resources that address the educational challenge, i.e. to select a

subset of resources from a large corpus that is relevant to a specific research question

or topic, based on factors such as time availability, reading capacity, and content

complexity. For example, given a set of papers with associated relevance scores,

citation counts, and a limited amount of time to be devoted to reading, a student

will have to determine the subset of papers that maximises the overall relevance or

information gained based on the time limit and reading capacity constraints.

Accordingly, the proposed framework utilises the notions of (a) the Knapsack

problem as a generic methodology to identify the best subset of resources that max-

imise their value while adhering to a (weight) constraint, (b) the ACO swarming

algorithm that is inspired by ants for the task of identifying the aforementioned sub-

set, and (c) the educational domain wherein one of the common processes includes

the examination of educational resources in order to address an educational need.

The fusion of these notions is based on a mapping between their key characteristics,



August 8, 2025 5:17 output

Co-Creation in Generic Educational Activities: A Swarming Framework 15

as shown in Figure 4.

Education

Knapsack 

problem

ACO 

swarming

•items ↔ resources

•item weight ↔ size of 

bibliography of resource

•item value ↔ resources ability 

to address educ. need + number of 

other resources citing this resource

•iterations ↔ combinations of subset

of resources to address educ. need 

•items ↔ locations / processes 

meeting ants’ need

•item weight ↔ introduces realism 

of limited resources

•item value ↔ desirability of path

•iterations ↔ the paths 

travelled to meet need

• alpha ↔ impact of collective 

memory on students

• beta ↔ impact of local student 

information

•evaporation rate ↔ capability of 

students to retain collective memory

•iterations ↔ combinations of subset of 

resources to address educ. need 

•ants ↔ students

•ants’ need ↔ educational need/process

•places that meet need ↔ educ. resources

Fig. 4. Mapping between key notions of the Knapsack problem, the ACO swarming algorithm, and

a generic educational process.

Using this framework, for the pillars “educational process” and “Knapsack prob-

lem”, educational sources are mapped to items; the number of bibliographic entries

within each source is mapped to the item weight; citations received by a source as

well as the source’s ability to address the informational need are mapped to the

desirability of each item; and, the combinations of subsets of resources that must

be examined to address the educational need are mapped to iterations.

For the pillars “Knapsack problem” and its “ACO swarming” approach: items

are mapped to locations and/or processes that meet ants’ needs (e.g. foraging); the

item weight is mapped to the process of ACO that introduces realism by including

constraints; the item value is mapped to the desirability of a path; and, iterations

are mapped to the paths travelled by ants to meet their needs.

For the pillars “ACO swarming” approach and “educational setting”: parameter

Alpha (α) is mapped to the impact of collective memory on students’ decisions; pa-

rameter Beta (β) is mapped to the impact of local student information; evaporation

rate is mapped to the capability of students to retain a varying persistence collec-

tive memory; iterations are mapped to the combinations of subsets of resources that

must be examined to address educational needs; ants are mapped to students; ants’

needs are mapped to educational needs / processes; and, places where ants meet

their needs are mapped to educational resources.

The selection of the specific attributes for each of the constituent pillars / pro-

cesses was done on the basis of the significance of the attributes, on each respective

domain. The pair-wise interrelation was achieved based on the definition / descrip-

tion of the attributes, as shown in Figure 4.
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4. Experimental evaluation

4.1. Experimental Setup

To explore the capabilities of the ACOK algorithm, we built a simulation model, that

allowed us to test the algorithm in various scenarios and perform sensitivity analyses

on its input parameters to assess their impact on effectiveness. The simulation model

was implemented in the .NET framework using C#. The machine characteristics

that we run the tests are, Intel Quad Core i7-6820HK CPU @ 2.70GHz with 16 GB

RAM. To obtain a simulation model that is as realistic as possible, the experiments

were conducted using graphs directly obtained from Connected Papers 48 via their

REST API.

Through Connected Papers, researchers are able to locate relevant academic

papers based on the field of study in which they are interested (see example in

Figure 5). For the purposes of this work, the graphs experimented on where based on

papers that research ICT methodologies for the reduction of risks and vulnerabilities

closely related to climate change (e.g. flood risk, risk of fire, erosion, landslides

and landslides). This selection was made as a preparation for future application of

the proposed framework in various levels of educational institutions to promote /

educate on issues of the climate crisis.
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Fig. 5. An example of Connected Papers graph.

We tested the simulation model using a set of three graphs with 20, 30 and

40 papers respectively. For each graph, we run a test scenario with the ACOK

algorithm parameters set as follows:

• Number of Iterations: 5, 10, 100, 1000

• Number of Ants: 1, 2, 4, 6, 8, 10, 15, 20, 25, 30, 50, 100

• Evaporation Rate: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

• Alpha: 0, 1, 2, 3, 4, 5

• Beta: 0, 1, 2, 3, 4, 5
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The test scenario for each graph produced 17,280 results that measured the

success rate of that particular combination of parameter values compared against

the optimal solution obtained from the dynamic programming algorithm.

Furthermore, to validate the fact that ACOK, despite inherent stochasticity,

produces results very close to DNP, we ran the Wilcoxon Signed-Rank Test 49 for

the “Solution Score” obtained from ACOK and DNP over 50 different scenarios

(graphs obtained from Connected Papers) as shown in Table (2).

Table 2: Best solution score per graph in ACOK & DNP.

# Graph id ACOK Score DNP Score

1 00acc6bf481d6d81995d231e7931113ccc9aa31d 9.59 9.61

2 0dc223480bd521f6eae897f1e4b5fcb2bd81b765 7.66 7.73
3 173d1555d3efc60956acda6c85165292546c5c38 7.92 8.01

4 18f8bf0d001fcbc01f8f83ca3c6bfc520d779ad8 8.53 8.55

5 19d56eebdac34f0848e00c8fce6ee96ba8dad362 8.28 8.34
6 1a8002f88748cce5f40d374141a31a50e2c0a245 8.14 8.22

7 1bbd7c193475b84f8acb113898146fbac90d5572 6.73 7.46

8 1cdd1948bb6895454b1bb009062a896cbded6b58 8.49 8.58
9 25a6ea8e7b5edd05a71b1dd91f26b5741ebaf28e 8.30 8.32

10 25eecb89bed586cb7066d0b3dfd12dbe120c0f8a 8.62 8.66
11 2e399cac4022ac52072e98d6e310c2e61b6f5b0d 9.59 9.72

12 365b62472d95de8a203fa513e80f491b5323ab42 8.24 8.34

13 36bbca69c74376f5e0190458a6b794bb01066106 8.64 8.69
14 3d877065e079f54ce1a97b6231b94def687dbb76 7.50 7.52

15 416c081bdb82251ae402bbd5222ade49d56db134 8.72 8.72

16 432672fafe125435b43f891fa97496985a719b15 7.79 8.01
17 4e54dfc251d987e0da5286163814b9989a37cd2d 6.18 10.45

18 59fd232f314d1db75c38dce15f906a1789f46826 8.40 8.43

19 5e1234229e59cbc48420601832ed08180f21642f 8.06 8.09
20 5fb9176fa0213c47d1da2439a6fc58d9cac218b6 9.04 9.04
21 65d20c4926407068298220540769dd6ff77a33d2 8.10 8.27

22 73750e1a1c9a6645cb0c8948c119143b6d3c5c05 8.90 9.73
23 790dfacaeb70f9f0fcb2c98ec61ac216f28f6ab5 8.88 8.91

24 7964e723b7afd36c5824f2c27cbcd18e02f5d16c 8.61 8.61

25 7d561845fef639cbe428d182d414dff4f9c7a60e 7.24 7.28
26 7dde44a178a64f4562988ef8883b37488c2a6569 8.57 8.60

27 858b3c532ceb73ba7ad00cb3ba55b9a161f86e3a 6.59 6.68
28 870d8a90ebc2860bbdd6a261c906555e9b1eb333 8.79 8.88

29 8813f772eff9573e5e6d671d42ebc0bff1594889 7.90 7.94
30 88779c23a367a652ff6989c3047c0f624627d222 10.49 10.61
31 8954928ac7ff9529931f501d6ae7e3121104fe8e 9.07 9.10

32 8cd688bf2e4532be29a74bd7e2922e1774d5e03f 8.60 8.66

33 923a15c8519e8db3cb18665346d6fe1d38760255 8.43 8.51
34 9ddaca07ea4c96e9effab2954aee9b719cb1eb23 8.19 8.40

35 a01a3c061644f6d140e643ec2f0ad33ee188baf3 7.08 7.21
36 a7394c3e226a698719b56a5a57989a01200e23ee 8.32 8.33
37 b8cadd2bcd8f1166562f2bba5f64ec0528e29033 8.42 8.44

38 bd1ee8194a092c65a2ce832ddd0b4fa65a70b74e 7.64 7.70

39 c367dc3b1efd1b32a3532d3f6334cf6560784342 8.58 8.58
40 c54b5737ffc1da720a3dd51615587d34892f81ad 9.79 9.93

41 caf62f1c21a671e7226078e8287995012a92c14e 8.07 8.16
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Table 2 (Continued)

# Graph id ACOK Score DNP Score

42 cc2ba00bb0f54ee295a4df70ac6a58b41b8c5593 8.93 8.93

43 ce8a920b97748fe92ccd83b943a244b2111d1619 9.67 9.74
44 d48673b4a2279867c12d60a97797472507fb8706 8.32 8.47

45 db659897e9f3904277b8ec1188ac3f91ee5da7ed 8.60 8.60

46 df9c58bdedae83bbb184b84dea9a1b0d81f694b4 8.90 8.96
47 e5b5e0d1d692d5c07aba181f0ee08ac27bee3a3e 8.00 8.01

48 e639ab4ffe613877d0d6cf3a67aa7c1007cced34 9.39 9.50

49 ec3b84f36e1db7a53ac8bdeca0fd643cf8675e9d 7.63 7.73
50 f6e6fa5fe91ea5ca1747eaece5375f1898abea8d 9.09 9.09

The result received included (a) the sum of the ranks of the differences

above zero (a.k.a. “statistic”) with value 0, and (b) the “p-value” with value

0.999999994491044. This indicates that the paired samples are identical in terms of

the rank sums of their differences, and there is no statistical evidence to suggest any

difference between them. This situation usually occurs when the data in the paired

samples (ACOK Score and DNP Score) are exactly the same or extremely close to

each other, leading to a strong consistency with the null hypothesis of no differ-

ence. In other words, the data is consistent with the null hypothesis: any observed

differences are likely due to random variation rather than a true effect.

4.2. Sensitivity Analysis

By focusing on the parameters Alpha (α), Beta (β), and Evaporation Rate (ϱ) in

the range of the highest success rates, we attempted to examine the effect of these

aspects of the experimentation on the utilised algorithm and subsequently, their

effect on the solution received. For those instances, we examined the values for each

of these parameters when the Success Rate (see section 4.3.1) was at its peak. We

then kept two of those constant and examined more closely the impact of the third

one on the Success Rate in turn. This produced the following results.

4.2.1. Parameter Alpha

Figure 6 shows that for values of Beta = 2 and Evaporation Rate = 0.8 we obtain the

best (exact) solution when Alpha = 1 with the Success Rate being at its maximum

(100%). On the other hand, we obtain the worst solution when Alpha = 5 with the

Success Rate being at its lowest (82%). In general, we observe that we start with

high Success Rates that decrease as Alpha increases, showing the tendency that

lower values of Alpha achieve better results.

4.2.2. Parameter Beta

Figure 7 shows that for values of Alpha = 1 and Evaporation Rate = 0.8 we obtain

the best solution when Beta = 2 with the Success Rate being at its maximum
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(a) 20 Items (b) 30 Items (c) 40 Items

Fig. 6. Parameter testing - Alpha

(100%). On the other hand, we obtain the worse solution when Beta = 0 with the

Success Rate being at its lowest (86%). In general, we observe that the results start

with low Success Rates that increase as Beta increases until we reach somewhere in

the middle of the values of Beta at which point we see a slight decreasing tendency

leading to a plateau, showing the tendency that mid-range values of Beta achieve

better results.

(a) 20 Items (b) 30 Items (c) 40 Items

Fig. 7. Parameter testing - Beta

4.2.3. Parameter Evaporation Rate

Figure 8 shows that for values of Alpha = 1 and Beta = 2 we obtain the best

solution when the Evaporation Rate is close to 0.8 with the Success Rate being at

its maximum (100%).

(a) 20 Items (b) 30 Items (c) 40 Items

Fig. 8. Parameter testing - Evaporation Rate

On the other hand, we obtain the worst solution when the Evaporation Rate is

close to 0.4 with the Success Rate being at its lowest (94.7%). The fact that there is
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a small variation on the Success Rate when the number of items increase, is initially

attributed to the relative small number of experiments performed in this work as

well as to the specific characteristics of the current setup.

4.2.4. Default parameter values

Given the aforementioned results we selected as default values for Alpha, Beta and

Evaporation Rate to be 1, 2, and 0.8 respectively. Based on our simulation model,

the Number of Ants never exceeds the value of thirty which maps favourably to

the paper’s theme of the typical number of students in a class. Additionally, the

maximum Number of Iterations to be executed, within which the solution is to be

found, is selected to be 10 as, per our theme, most repetitive tasks larger than these

are deemed to become exhausting and boring for the students participating in the

experiments.

4.3. Evaluation Results

We performed 2 sets of experiments each with 2 variations measuring: (a) Success

rate, and (b) Number of iterations at which the optimal solution was found, both

for varying number of items in the graph, and number of ants involved.

All scenarios were executed 10 times for each variation of the parameters to

average the stochasticity of the heuristic process of the algorithm. After tuning the

parameters as outlined in Section 4.2, we present their default values in Table 3.

This process resulted in a dataset containing 18,000 entries.

Table 3. Parameters’ value ranges

Parameter Value / Range

Alpha 1

Beta 2

Evaporation Rate 0.8

Number of Iterations 1. . .20

Number of Ants 1. . .30

Items in graph 20, 30, 40

4.3.1. Measuring Success Rate

These experiments involve testing the impact of the number of items in the graph

and the number of ants involved on the success rate. That is, the ACOK’s average

success rate against the exact solution produced by the DNP algorithm, as described

in Section 2.6.2. Thus, we measure this as a percentage of the output produced by

ACOK against DNP since, as already mentioned, the ACO algorithm does not

always guarantee the exact solution 40 hence the use of the DNP algorithm.
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4.3.2. Maximum Success Rate per Items in a graph

This experiment involves testing the impact of the number of items a graph contains

and how this affects the process of finding the exact solution. Thus, we measure the

maximum percentage of the success rate against DNP.

Examining the results shown in Figure 9, we observe that adding more items

in a graph above the number 30, reduces the success rate slightly by 4%. However,

the maximum success rate for all items still remains very high, above 96% given the

performance of ACO.

Fig. 9. Maximum Success Rate per Items in a Connected Papers graph

4.3.3. Average Success Rate per Ant

The next experiment tests the impact of the number of ants involved to find the

exact solution. Accordingly, we measure the average percentage of the success rate

against DNP’s performance.

Examining the results shown in Figure 10, we observe that for all three classes of

items (20, 30, 40 items), the results received present a similar evolution for varying

number of ants, i.e. as a part of an s-shaped logistic increase.

Fig. 10. Average Success Rate per Ant

For the class of 20 items (blue dashed line), the success rate for one ant is 50%

and the 95th percentile is achieved for 9 ants with success rate 90%, while the class

peaks at 30 ants reaching 95% success rate. For the class of 30 items (solid orange
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line), the success rate for one ant is 38% and the 95th percentile is achieved for 16

ants with success rate 88%, while the class peaks at 30 ants reaching 91% success

rate. For the class of 40 items (x-marked gray line), the success rate for one ant is

28% and the 95th percentile is achieved for 22 ants with success rate 85%, while

the class peaks at 30 ants reaching 87% success rate.

4.3.4. Measuring number of iterations needed

The next set of experiments concentrates on how the number of ants and the number

of items in a graph affect the number of iterations needed to reach the optimal

solution.

4.3.5. Average number of iterations the best result found at

In the first experiment of this set, we examine the average number of iterations in

which the optimal solution is found by varying the numbers of ants.

Fig. 11. Average number of iterations at which the best result was obtained.

From the results received in this experiment, as shown in Figure 11, we observe

that for all three classes of items (20, 30, 40 items), the results received present a

similar evolution for varying number of ants, i.e. a near linear decrease.

For the class of 20 items (blue dashed line), for one ant the average number

of iterations at which the best result is found is 9.6 , the inclination of the slope

is 350◦, while the class achieves the best result for 30 ants in iteration 6. For the

class of 30 items (solid orange line), for one ant the average number of iterations at

which the best result is found is 10, the inclination of the slope is 352, 5◦, while the

class achieves the best result for 30 ants in iteration 7,4. For the class of 40 items

(x-marked gray line), for one ant the average number of iterations at which the best

result is found is 10,2, the inclination of the slope is 353◦, while the class achieves

the best result for 30 ants in iteration 8.3.

4.3.6. Maximum number of iterations the best result found at

In the last experiment of this set, we examine how the number of items in a graph

and the number of ants affect the number of iterations needed to reach an optimal
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solution. According to the results, as shown in Figure 12, we observe that for all four

classes of number of ants (1, 10, 20, 30), the results received exhibit high variability.

For the class with 1 ant (blue long-dashed line) the results for the maximum number

of iterations the best result was found at are constant at 20 iterations. For the class

with 10 ants (solid orange line) the results for the maximum number of iterations

the best result was found at are constant at 19 iterations for up-to 30 items while

for 40 items the result increases to 20 iterations.

Fig. 12. Maximum number of iterations at which the best result was obtained.

For the class with 20 ants (x-marked gray line) the results for the maximum

number of iterations the best result was found at for 20 items are 18 iterations,

while for 30 and 40 items are constant to 20 iterations. For the class with 30 ants

(yellow short-dashed line) the results for the maximum number of iterations the

best result was found at for 20 items are 18 iterations, for 30 items are 20 iterations

and 40 items are 19 iterations.

4.4. Discussion

For the “Average Success Rate per Ant” experiment (see Section 4.3.3, Figure 10),

we observe that for all three cases and for one ant, all three alternatives of the graph

size present the worst success rate of their respective examination. The results in-

crease in an exponential manner as more ants are incorporated into the experiment,

reaching approximately 90% on average for 30 deployed ants. The result’s expla-

nation presents as straightforward since the introduction of more ants allows more

combinations to be processed within a set number of iterations; hence the possibility

of finding the best solution with a higher success rate is also increased. Moreover,

we observe that for smaller search spaces, i.e. having fewer items to process, the

success rate is higher than for larger search spaces (i.e. graphs with 20 items as

opposed to graphs with 40 items).

For the “Average number of iterations the best result found at” experiment

(see Section 4.3.5, Figure 11), we observe that the maximum number of iterations

at which we find the most optimal solution, peaks at approximately 10 iterations

(averaged values). We also observe that as more ants are added to the colony, up

to a total of 30, iterations are almost consistently decreasing with the minimum

value reaching 6 iterations. It follows that as more workers (ants) are added, the
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parallelism of the process increases and thus fewer iterations are required, as ex-

pected. Moreover, we observe that the size of the graph, representing the search

space, affects proportionately the iteration at which the identification of the most

optimal solution is made at, for a given size of workers, again as expected.

In addition, for the “Maximum number of iterations the best result found at”

experiment (see Section 4.3.6 - Figure 12), we observe that for 1 ant the number

of iterations remains constant at 20, whereas for the remaining ants, the number of

iterations decreases as more ants participate in the process. We also observe that

the maximum number of iterations required for each graph never exceeds the 20

iterations regardless the number of ants. Moreover, an interesting point arises when

examining the worst-case scenario: a graph with a large number of items (40) and

only one ant. Despite this challenging setup, only 20 iterations are needed, which

is significantly fewer than the exhaustive brute-force method that requires many

orders of magnitude more iterations, as discussed in Section 2.6.1.

Finally, while our results demonstrate the effectiveness of the ACO approach,

it’s important to acknowledge how the algorithm’s stochastic nature might influ-

ence educational implementations. The variability in success rates, particularly with

fewer ants, presents both challenges and opportunities in classroom settings. This

variability mirrors real-world problem-solving where groups often arrive at different

yet viable solutions.

In educational practice, this variability can be leveraged as a learning opportu-

nity. When different student groups (representing different ant colonies) arrive at

varied solutions, instructors can facilitate comparative discussions about the rela-

tive merits of each approach. These discussions can deepen understanding of both

the subject matter and the problem-solving process itself. Additionally, the improve-

ment patterns observed as more ants are added illustrates the value of collaboration

and diverse perspectives in addressing complex problems.

To address potential frustration that might arise when students don’t immedi-

ately find optimal solutions, instructors implementing this framework should em-

phasize the iterative nature of the learning process. Structured reflection activities

where students analyze the performance of different parameter settings can trans-

form the algorithm’s variability into lessons about persistence and methodical im-

provement. This approach treats suboptimal initial solutions not as failures but as

valuable data points in the learning journey.

4.5. Real-World Experimental Validation

To bridge the gap between simulation-based validation and practical educational

implementation, we conducted a preliminary real-world experiment with students

from a Greek secondary school. This experiment establishes a foundational pro-

totype that demonstrates the feasibility of applying our framework in authentic

educational settings.
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4.5.1. Experimental Design

The real-world validation involved 1 ∗ 2 + 3 ∗ 2 + 6 ∗ 2 = 30 students distributed

across different group configurations and two distinct scenarios that aligned with

our simulation parameters (Table 3). The first scenario presented students with 20

academic articles, and the second scenario required evaluation of 40 articles. Each

scenario challenged students to collaboratively select the most relevant subset of

articles for a given educational task while operating within time and complexity

constraints, following the principles of our proposed swarming framework. The full

set of parameters are presented in Table 4.

Table 4. Parameters’ value ranges in real-world experimentation

Parameter Value / Range

Alpha 1

Beta 2

Evaporation Rate 0.8

Number of Iterations 10

Number of Ants 1, 3, 6

Items in graph 20, 40

4.5.2. Prototype Implementation

Recognizing the complexity of developing a comprehensive online platform capa-

ble of handling extensive article management, user reviews, and real-time ACOK

algorithm implementation, we designed a streamlined prototype that captures the

fundamental elements of our framework. The prototype is currently accessible at

https://softwareexelixis.com/acok and provides an interactive environment

for educational resource selection.

Rather than overwhelming students with complete academic articles, our imple-

mentation presents article titles accompanied by dynamically calculated Preference

Index scores. These scores are generated through the ACOK framework, incorpo-

rating both ACO pheromone trail mechanics and Knapsack problem optimization

principles. This approach maintains the essential decision-making processes while

reducing cognitive overhead during the selection phase.

Students engage in an iterative selection process where they review available

article titles and their corresponding preference indices, make selections based on

perceived relevance to the educational task, and observe how their collective choices

influence subsequent selections. The framework automatically manages the collab-

orative aspects, handling pheromone trail updates and cross-group communication

without requiring explicit coordination from participants.

https://softwareexelixis.com/acok
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4.5.3. Prototype Rationale and Future Development

This prototype serves as the foundation for more sophisticated implementations. In

fully developed systems, students would access complete articles through integrated

online platforms, provide comprehensive ratings and reviews throughout their ex-

ploration of the articles’ corpus, receive advanced algorithmic support based on

complete ACOK implementation, and benefit from sophisticated pheromone trail

modeling that captures nuanced preferences and peer discoveries.

4.5.4. Preliminary Observations

The preliminary results from this real-world validation reveal several important

findings regarding practical implementation. Figure 13 presents the success rates

achieved across different group sizes for two scenario configurations: 20 articles

and 40 articles. The results demonstrate a clear positive correlation between group

size and performance effectiveness. For the 20-article scenario, individual students

achieved a 24% success rate, which increased substantially to 57% with three-student

groups and reached 82% with six-student groups. The 40-article scenario showed a

similar upward trend, with individual performance at 17%, three-student groups

achieving 58%, and six-student groups reaching 70% success rates.
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Fig. 13. Preliminary results from real-world validation.

These empirical findings align closely with the patterns observed in our simula-

tion results shown in Figure 10, where larger ant colonies consistently outperformed

smaller ones in identifying optimal solutions. The real-world data exhibits the same

s-shaped logistic growth pattern characteristic of collaborative optimization pro-

cesses, confirming that increased group size enhances collective problem-solving ca-

pabilities.

It should be noted that our simulation methodology required executing each

scenario ten times per parameter variation to account for the stochastic nature of

the heuristic algorithm, as detailed in Section 4.3. Such extensive repetition proves

impractical when working with human participants in educational settings, where
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time constraints and participant availability impose natural limitations. Despite

conducting single-run experiments rather than multiple iterations, our real-world

results demonstrate remarkable consistency with the averaged simulation outcomes,

suggesting that the collaborative human intelligence exhibits similar optimization

characteristics to the algorithmic approach.

While our pilot study was necessarily limited in scope regarding the maximum

number of participants due to practical constraints of the educational setting, the

observed trend strongly suggests that the theoretical predictions from our ACOK

simulation would continue to hold with higher student numbers.

Students exhibited clear learning patterns across iterations, with later selections

showing improved alignment with educational objectives, supporting the effective-

ness of the collaborative refinement process embedded in our framework. The consis-

tency between simulation and real-world results supports both the accuracy of our

computational model and the practical applicability of swarming principles in edu-

cational contexts. Notably, the performance improvement from individual to group

work demonstrates the tangible benefits of collaborative approaches, even within

the constraints of our simplified prototype implementation.

Perhaps most significantly, despite the simplified implementation, students suc-

cessfully engaged with the swarming-inspired selection process, indicating that the-

oretical frameworks can be meaningfully translated into practical educational appli-

cations. The automatic handling of collaborative elements by the framework elim-

inated coordination difficulties while preserving the essential benefits of collective

intelligence.

4.5.5. Limitations and Future Work

This prototype experiment represents an initial validation of core feasibility rather

than a comprehensive real-world implementation. Future development priorities in-

clude creating robust online platforms that support full article access, sophisticated

rating systems, and complete ACOK algorithm integration. Enhanced user expe-

rience design will focus on implementing intuitive interfaces that seamlessly blend

algorithmic optimization with natural collaborative learning processes.

Comprehensive evaluation through extensive field trials across diverse educa-

tional contexts remains essential for refining the framework and validating its ef-

fectiveness at scale. The encouraging outcomes from this preliminary real-world

validation reinforce confidence in the practical applicability of the proposed frame-

work while providing valuable insights for subsequent development phases.

5. Limitations

While the proposed model demonstrates significant potential in enhancing educa-

tional outcomes through swarming methodologies, there are limitations that should

be highlighted. Firstly, the complexity of implementing the model across diverse ed-

ucational settings may vary due to differences in infrastructure, technological acces-
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sibility, and educator familiarity with advanced algorithms like ACO. Additionally,

the effectiveness of the model heavily relies on the proper tuning of ACO parame-

ters, which can be challenging and time-consuming without extensive expertise and

experience, especially in the mapped setting of an educational scenario.

Furthermore, the model assumes students with a baseline level of digital lit-

eracy and collaborative skills, which might not be universally present. There is

also risk that the competitive elements introduced by optimisation problems could

overshadow collaborative learning goals if not carefully managed. Lastly, while the

model has been validated through simulation, real-world educational environments

may present unpredictable variables impacting its performance and scalability.

6. Conclusions

The meteoric popularity of the flipped classroom model 12 in recent years has been

based on its ability to enhance students’ engagement and promote learning through

students’ collaboration in order to address complex educational tasks 3, thus leading

to the co-creation of knowledge. Such co-creation of knowledge is also observed in

nature-based collaborative solutions 38, among others, in the form of swarming for

efficient and effective tackling of complex problems. In swarming, as in co-creation,

the key actors’ “collective intelligence” emerges significantly more advanced than

the sum of its units 5.

One of the key aspects of the flipped classroom model is the shift of class time

activities to non-class time activities 36. Thus, students initiate tasks such as exam-

ining the (suggested or at will) bibliography outside the classroom, thus prompting

the generic educational task of the selection of educational resources that address

a complex educational challenge with constraints 35. A common such example is

the selection of a subset of literature from a large corpus that is most relevant to

a specific research question, while maintaining constraints such as time availability,

content complexity, etc. This task is efficiently addressed by the Knapsack prob-

lem which attempts to select the subset of items with maximum desirability while

satisfying a constraint on the selected items.

Building on the aforementioned aspects of an educational task modeled to com-

binatorial optimisation solved by swarming methods, in this work we propose a

framework, (see Section 3), that models the generic educational task of identify-

ing a subset of literary works that best meets the task’s requirements from a large

corpus, for some constraint, and maps it to the Knapsack problem that is subse-

quently solved using the ACO swarming algorithm in order to take advantage of

the co-creational advantages of the flipped classroom paradigm.

Experiments with alternative solutions to the Knapsack problem (Section 4),

such as brute-force and dynamic programming, indicate their inappropriateness to

the requirements of the proposed framework, while experiments with ACO’s sensi-

tivity and key parameters indicate the effectiveness and efficiency of ACO to the

proposed framework. Future research will focus on addressing the aforementioned
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limitations by developing comprehensive training programs for educators, creating

more user-friendly interfaces for algorithmic applications, and conducting extensive

field trials to refine the model under various educational contexts. Additionally,

plans include mapping more generic and specific educational activities to the pro-

posed framework, such as updating the students’ cognitive model for a subject

following the studying process and co-creating an output on the subject as an ex-

pression of their updated cognitive model and other input parameters. Moreover,

experimentation with more swarming approaches is needed, given the requirement

of co-creative solutions, to test their effectiveness and efficiency. In addition, we plan

experimentation with multidimensional data and other (competing) swarming ap-

proaches. Finally, applying the proposed framework at various levels of educational

institutions will help promote and educate on issues of the climate crisis.
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